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Barrier Roles in a Repository System

e Mechanical Barrier

— Resist external stresses
e Load capacity/stiffness
e Compliant with local tectonic displacements
e Resist or diffuse impacts

— Permeability and thermal conductivity

e Geochemical Buffer
— Decrease corrosion of waste package components
e Electrochemical and pH control
e Suppress aggressive radiolysis products
e Passivate surfaces
— Reduce solubility of key nuclides
— Steer contact metamorphosis to benign phases

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY UT-BATTELLE




T S ———— —

HH

Porosity \'\\ CSH (Short fibres)
' N\
= \
Reaction \
N \
Sequence in . \ Catoi,
S \
Portland g \
CSH (Long fibres) \
Cements \
\ e
R
OO .
l || l Enrmg“:
J 5 30,7 2 6 7 2 7 26 90
AV N N
Age: Minutes Hours Days
|. Soroka, Portland Cement Paste | Dormant period | Setting | Hardening
. -

and Concrete, Chemical Publishing
Co., 1979

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

UT-BATTELLE




Evolution of the Cement with Time

e Complex alumina-silicates with fine-
textured mineral phases and large fraction
of amorphous hydrosilicate phase, both of
which slowly undergo diagenesis

e Matrix components leach at different rates
and results in a complex series of solution
reactions with groundwater adjacent to the
surface with reprecipitation
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Material Choices to Mitigate Waste
Constituents’ and Groundwater
Impacts on Waste Form Performance

e Choices of cement types

e Choices of admixtures to control waste

form physical and chemical properties
— Pozzolanic silicates

e Reduce Ca/Si ratios

e Reduce Al/SI ratios

e Reduce permeability (H,0, O,, SO,~, CI-, etc.)

e Increase HD-CSH and lower LD-CSH
—Increase internal ion exchange capacity

— Effect reducing conditions (Eh/pH regime)
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Formulation of Grouts to Prevent Ca(OH),

relLICa,
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Results of silica reactivity tests identify formulae
that balance the suppression of calcium hydroxide
with curing reaction rates

% Ca(OH), consummed based on theoretically available Ca(OH), —— BB-25-40-30-5

105 —8— CC-30-35-30-5

95 == DD-35-40-20-5

85 - EE-35-30-30-5

75 == FL-40-30-25-5

—8—FH-40-30-22-8

65
== GL-45-25-25-5

% Ca(OH)2 used

b5
- GH-45-25-22-8

45
/ —— HL-50-25-20-5

35 —+—HH-50-25-18-8

10 33 53 70

Time, days

Nomenclature: 30-35-30-5 (30 wt% OPC Type V, 35 wt% BFS, 30 wt% FA and 5 wt% SF)
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Dewatering and Changes in CSH
Packing Density
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Dewatering and Changes in CSH
Packing Density (continued)
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Figure 3: Frequency plots of indentation modulus and indentation hardness with fitted Gaussian
curves for low-density (LD) C-S-H, high-density (HD) C-5S-H, and Portlandite (CH). The decon-
volution was carried out for a bin size of AM = 2.5 GPa and Al = 110 MPa.
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Dewatering and Changes in CSH
Packing Density (continued)
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Figure 11: Packing density as a function of the exposure temperature determined from a reverse
analysis of the micromechanics model (for v, = 0). The broken lines represent the limit packing

density values: 7, ,, ~ 0.64 and 7, =~ 0.74.
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Cured High-Silica Cements prevent
Alterations and Water Loss from
Concretes
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Increasing Silica in Cement
Increases Silica in Leachates
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Harris, A.W., M.C. Manning, W.M. Tearle, and C.J. Tweed, Testing of models of
the Dissolution of cements—Ieaching of synthetic CSH gels, Cement and

Concrete Research, 32, pp 731-746, 2002.
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High-Silica Forces Formation of
Insoluble Uranium Silicates
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Silicates Form a Dense Diffusion Layer on
the Surface of UO, even under Oxidizing
Conditions

Vault environment
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Principal U(VI) Compounds

Values of AG’; .o for the U(VI) minerals used in the construction of Fig. 7 (Chen 1999)

Uranyl phases Formula kJoule/mol? kJoule/mol°
Metaschoepite [(U0,)40,(0OH),,]*(H,0),, -13,092.0 -13,092.0
Becquerelite Ca[(UO0,)0,( OH)]*(H,0), -10,324.7 -10,305.8
Rutherfordine U0,CO, -1,563.0 -1,563.0
Urancalcarite Ca,[(UO,);(CO,)(OH)]*(H,0), —6,036.7 —-6,037.0
Sharpite Ca[(UO,)4(CO,)(OH),]*(H,0), -11,607.6 ~11,601.1
Fontanite Ca[(U0,);(CO,),]*(H,0), -6,524.7 —-6,523.1
Liebigite Ca,[(U0,)(CO,),1*(H,0),, ~6,446.4 —6,468.6
Haiweeite Ca[(U0,),(Si,04),]*(H,0)4 -9,367.2 -9,431.4
Ursilite Ca,[(UO,)(8i,05)5(OH)¢]*(H,0) 5 203778 ~20,504.6
Soddyite [(UO,), Si0,]*(H,0), -3,653.0 -3,658.0
Uranophane Ca[(UO,)(SiO;0H)],*(H,0), ~6,192.3 —6,210.6

aChen 1999 YFinch 1997
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ASTM C 1550 Round Panel Test

LOAD-DEFLECTION DIAGRAM, ROUND PANEL TEST
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Issues with Accelerated Aging at Elevated
Temperatures to Test Long-Term Durability
when Reaction Paths Change

Conditions Result
100°C for 10 minutes Boiled egg
25°C for 28 days Chicken
15°C for 60 days Rotten egg
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Formation Energies of Phases That
Can Form in Aging Cement Pastes

Product At 25°C At 100°C

Hillebrandite -2.42 -1.60
Ca,Siz04(0OH),

Afwillite +3.94 +6.82
Ca,Si,0,(0H),

Xonotlite -0.42 +0.49
Ca,Si 017(0,H)

Tobermorite -1.38 +0.18

Ca:Si0,(OH),-4(H20)
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Missing Links Between Studies of
Ancient Cements and Laboratory
Tests

e Mass transfer coupled thermodynamic model
— Thermodynamic data missing

— Need for models for metastable intermediates
trapped by diffusion-controlled metamorphisms

e Microprobe analytical tools to see start of
phase transitions
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Future Studies Anthropogenic and Natural
Analogs to Address Durability

e Anthropogenic for 2000 to 6000 years
— Gallo — Roman
— Nabateans (6,000 years)

e Natural for over 10,000's to 1,000,000's year

— Million-year-old natural samples from sanidinite-facies metamorphic
rocks in Marble Canyon, Texas.

— Hatrurim formation in Israel. These formations contain many of the
same phases that form in high-silica cements. For example, the
minerals are natural analogs for the common cement-clinker phases
“alite” (CaySiOg, C3S) and “belite” (Ca,SiO,, C2S).

— Scawt Hill, Northern Ireland, occurs in a region with high
precipitation.

These cementitious analogs and their alteration products
provide the opportunity to study transport processes and
mineral metamorphisms on geologic time scales.
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Missing Links Between Studies of
Ancient Cements and Laboratory Tests

e Mass transfer coupled thermodynamic model
— Thermodynamic data missing

— Need for models for metastable intermediates
trapped by diffusion-controlled metamorphisms

e Microprobe analytical tools to see start of
phase transitions
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ission Electron Micro

Anatase

Scanning transmission electron Uraninits
microscope (STEM) images of U and Ti
minerals
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Mass Spe

« Secondary ion mass spectrometry
is one of very few methods that
provides highly spatially resolved
(a few microns), in situ chemical
and isotopic analysis of solid

materials.
Na-feldspar reacted with 130 rich 2 m KClI at 600°C,
200 MPa for 6 d; note 'O rich halo penetrating solid.

!...,A . . B
| 1650 [ 180
| a) | -

Ion imaging can provide details on the chemical
modification of solids interacted with water.
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Assessing Leach Performance at
Hydraulic Extremes

e Quasi-static flow (episodic saturation)
— Solubility control
—lon exchange equilibrium
— Source-term = C__, X Flow

e Dynamic (monolith permeability <1/100 soil)
— Advection of saturated groundwater

— Release to groundwater limited by diffusion
within the monolith

— Source-term A, {S/V} (Dgisrysion/time)/2
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A Relatively Impermeable Monolith
Has no Advection

A Differential Permeability of 100 Times Ensures that Saturated
Flow By-Passes the Matrix

Native Soils with
a Permeability of

>10-9¢cmls
+
e —
e +
Shield-Berm
Saturated Flow with a Permeability of
<1 x10-Tcmls
—>»
+
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Onset of Geometric Model at FC20.2

Nestor, C. W., Jr., Diffusion from Solid Cylinders, ORNL/SDTM-84, Lockheed Martin
Energy Research Corp., Oak Ridge National Laboratory, Oak Ridge, Tennessee, January 1980.

N D_ = effective diffusion coefficient, cm? s-1
root(J e !
o= LCLO) a = cylinder radius, cm
a j = J™ positive root of a zero-order Bessel function [J,(m)]

L = cylinder half-height, cm.
Diffusion from a Cylinder:

- -
~| D] (o)) (211" —— |
32 e L L U]
Fao ::1_2_222 2, \2
ma noj (2n-1) -(ocj)
FQt2) =0.223  FY(t) :=if(t > t2, FQ(t), FI(t)) F. = FS(ti) Fl ::Fl(ti)
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CURIE RELEASE FROM W9 MONOLITH as Sr-90
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Static Leaching with Secondary

Mineral Formation

Saturation

HCO,

First Mineral

Concentration
(Single Element)

Second Mineral

OH-, CO.?2,

FeaniFaiy
Ca?*, Mg#*,
SiO,*, AlO,*

Time
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Conclusions About Leach Testing

Short-term leach testing is conservative IF:
— Test does not allow for the effects of secondary
minerals, which
e Are highly selective for contaminant species
e Forms protective diffusion surface barriers

— The monolith matrix is relatively stable in the
geochemistry of the disposal horizon

e Shares same regions of the geochemical stability fields
e Has similar SiO,-Al,O; composition ranges

— Ultimate mechanisms of leaching, alterations, and
weathering are controlled by solid-diffusion rates
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General Conclusions

e There is a great body of knowledge on how to
formulate cementitious waste forms to process
and solidify radwastes from across the DOE
complex.

e There Is disagreement on how to measure and
model source-terms for the leaching for nuclides
Into the near-field transport models.

e There iIs no coordinated effort to reconcile
measured waste form performances with
accelerated testing and natural/anthropomorphic
analogs.
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Modeling Long-Term Durability of
Cementitious Materials (LBNL)

e Tasks

— Critically evaluate thermodynamic and kinetic
data relevant to silica-rich cements

— Develop meso-scale models to describe
competing carbonation and hydrothermal
alteration in the matrix and fine aggregate of
cementitious materials as a function of T, relative
humidity and Pg,.

— Model repository-scale alteration of emplaced
cementitious materials following closure for
periods up to 10,000 years
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Modeling Long-Term Durability of
Cementitious Materials (LBNL)

e Near-Term Plans

—Modify TOUGHREACT to model cement
aging at elevated temperature.

—Build a meso-scale model to simulate
cement carbonation, and calibrate model
against reported field observations
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LBNL and ORNL to Examine YMP
Heater Drift Specimens

e Obtain a sub-set of cores and achieved
specimens from YMP Heater drift to be
split between LBNL and ORNL

e Microscopic examinations to benchmark
phase modeling and laboratory
observations.

e LBNL has submitted testing plan
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